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Lithium battery technology faces challenges of safety, limited resources and high cost.1 Currently, this drives 
tremendous efforts to replace lithium in secondary batteries by safer chemistry, based on more abundant and 
significantly cheaper materials. One candidate that fulfils these criteria is aluminium, which is the most abundant 
metal in the earth’s crust and hence a cheap resource with high recycling rate. Moreover, its theoretical value of 
volumetric capacity of 8046 Ah/l is superior and its specific capacity of 2980 Ah/g is similar to that of lithium metal. 
In combination with either insertion cathodes made from graphitic carbon2 or conversion cathodes based on e.g. 
sulphur3 or oxygen4, aluminium anodes could yield a highly promising battery chemistry, provided a suitable 
electrolyte can be found. Mainly chloroaluminate ionic liquids5 and deep eutectic solvents (DESs)2 have been 
reported as electrolytes for these types of batteries. 
Similar to lithium, however, aluminium is prone to dendritic growth, which can ultimately lead to device failure.6 
The native oxide layer on the aluminium anode also poses a challenge to an efficient battery discharge/charge 
performance. It has been reported that soaking the aluminium anode in a suitable electrolyte has a positive effect 
on its electrochemical performance.7 Accordingly, the discharge/charge characteristics of the aluminium anode 
were tested by galvanostatic cycling in symmetric cells with a AlCl3:urea DES after various periods of soaking. The 
surface morphology of the aluminium anodes was then studied with scanning electron microscopy and energy 
dispersive X-ray spectroscopy. It turned out to be essential analysing the compositional changes of the native oxide 
layer during soaking in order to understand its effects on the aluminium growth morphology. This has been 
achieved with a combination of transmission electron microscopy and energy dispersive X-ray spectroscopy, 
secondary neutral mass spectrometry, as well as X-ray photoelectron spectroscopy.8 The consistent results provide 
the basis for a reliable interpretation of electrochemical impedance data recorded during soaking. 
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