

Galvanic deposition of subnanometric Os particles on TiO₂ nanotube arrays: Boosting the electrocatalytic hydrogen evolution performance

<u>Uroš Lačnjevac</u>¹, Mila N. Krstajić Pajić², Ana S. Dobrota³, Anca Mazare^{4,5}, Slađana Đurđić⁶, Imgon Hwang⁴, Natalia V. Skorodumova⁷, Dragan Manojlović⁶, Rastko Vasilić⁸, Igor A. Pašti³, Patrik Schmuki^{4,9,10}

¹University of Belgrade – Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia

²University of Belgrade – Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia

³University of Belgrade – Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia

⁴Department of Materials Science, WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany

⁵Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan ⁶University of Belgrade – Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia

⁷Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH–Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden

⁸University of Belgrade – Faculty of Physics, Studentski trg 12-16, 11000 Belgrade, Serbia ⁹Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, 78371 Olomouc, Czech Republic ¹⁰Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21569 Jeddah, Saudi Arabia

Proton exchange membrane water electrolysis (PEMWE) powered by renewable energy sources is seen as the most promising technology for high-rate production of green hydrogen. The acidic environment of PEMWE systems requires the use of efficient, but expensive platinum group metal (PGM)-based catalysts for the cathodic hydrogen evolution reaction (HER), which limits the prospects for wider commercialization of this technology. One of the main research directions today is designing stable and interactive substrates and facile methods for dispersing PGMs in order to reduce their content in HER cathodes and improve their utilization in the reaction. Our previous work showed that galvanic deposition of PGM nanoparticles on self-ordered TiO₂ nanotube (TNT) arrays can produce highly active composites with low PGM loading [1,2]. In this study, we extend the galvanic displacement approach to depositing osmium particles on hydrogenated "nanograss"-covered TNT array substrates [3]. Structural characterizations show that Os particles deposited by this procedure are mainly at the sub-nanometric level and entirely cover the inner tube walls. Our systematic investigations reveal the influence of galvanic deposition conditions (OsCl₃ concentration/temperature/duration) on the HER overpotential and mass activity of resulting Os@TNT composites. An optimum Os@TNT composite, achieving a balance between apparent and mass activity, is prepared at 3mM/55°C/30min and contains ~12 μg_{Os} cm⁻². It exhibits a low overpotential of 61 mV at a current density of 100 mA cm⁻², a high mass activity of 20.8 A mg_{Os}⁻¹ at an overpotential of 80 mV, and a durable performance in 1 M HClO₄. Density functional theory (DFT) calculations suggest that the hydrogenation degree of the TiO₂ surface does not only have a large impact on the dispersion and size of deposited Os particles, but it also affects their adsorption properties. The electronic interactions between the hydrogenated TiO₂ surface and small Os clusters may weaken the strong Os-H* binding characteristic for bulk Os and thus boost the intrinsic HER activity of Os sites.

Acknowledgement: The realization of this work was supported by: the Science Fund of the Republic of Serbia (PROMIS project RatioCAT, No. 606224); the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Contract No. 451-03-47/2023-01/200053, 451-03-47/2023-01/200135, 451-03-47/2023-01/200146, 451-03-47/2023-01/200162 and 451-03-47/2023-01/200168); the bilateral cooperation program between the Republic of Serbia and the Federal Republic of Germany (project years 2020–2021, project No. 22); DFG; the Operational Program Research, Development and Education (European Regional Development Fund, Project No. CZ.02.1.01/0.0/0.0/15_003/0000416 of the Ministry of Education, Youth and Sports of the Czech Republic); the Swedish Research Council (grant agreement No. 2018-05973); the Schwäbisch Gmünd Scientific Exchange Grant.

References

- 1. U.Č. Lačnjevac, R. Vasilić, T. Tokarski, G. Cios, P. Żabiński, N. Elezović, N.V. Krstajić, *Nano Energy* **47** (2018) 527. https://doi.org/10.1016/j.nanoen.2018.03.040
- 2. U. Lačnjevac, R. Vasilić, A. Dobrota, S. Đurđić, O. Tomanec, R. Zbořil, S. Mohajernia, N. T. Nguyen, N. Skorodumova, D. Manojlović, N. Elezović, I. Pašti, P. Schmuki, *J. Mater. Chem. A* **8** (2020) 22773. https://doi.org/10.1039/D0TA07492F
- 3. M. N. Krstajić Pajić, A. S. Dobrota, A. Mazare, S. Đurđić, I. Hwang, N.V. Skorodumova, D. Manojlović, R. Vasilić, I.A. Pašti, P. Schmuki, U. Lačnjevac, *ACS Appl.* Mater. *Interfaces* **15** (2023) 31459. https://doi.org/10.1021/acsami.3c04498
- 4. Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, C. Spöri, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B. Roldan Cuenya, P. Strasser, *ACS Catal.* 8 (2018). https://doi.org/0.1021/acscatal.7b03464
- 5. Q. Li, G. Fang, Z. Wu, J. Guo, Y. You, H. Jin, J. Wan, ChemSusChem (2023) e202301874 2024. https://doi.org/10.1002/cssc.202301874
- 6. J.R. Sánchez, J.D. Gutiérrez-Cano, P.J. Plaza-González, F.L. Penaranda-Foix, J.M. Catalá-Civera, Microwave calorimeter for dielectric and thermal analysis of materials, *Energy* **263** (2023) 125909 https://doi.org/10.1016/j.energy.2022.125909