

Interaction of cathodically evolved hydrogen with electroless Ni-P electrode

<u>V. Chakarova</u>¹, L. Mirkova¹, G. Avdeev¹, L. Aleksandrov², I. Piroeva¹, M. Monev¹

¹Institute of Physical Chemistry, Bulgarian Academy of Sciences

tyta of General and Ingraphic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchov N. 11, 1113 Soft

²Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev bl. 11, 1113 Sofia, Bulgaria

Transition metal phosphides have received considerable attention as electrocatalysts [1]. Among them, nickel phosphides have been widely explored for electrocatalytic HER [2,3]. The improved electrocatalytic properties of Ni–P alloy coatings are explained by the influence of different factors. One of them is the ability of amorphous Ni–P electrode to adsorb and absorb significant amounts of hydrogen, which changes the electron structure of the basic metal [4].

Our previous works are devoted on the electrocatalytic properties of electroless Ni-P coatings on a steel substrate in terms of hydrogen reaction in alkaline or acidic media in a wide range of phosphorus content of the coatings [5,6]. The present research is focused on evaluation of the interaction of cathodically released hydrogen with the electroless Ni-P alloy coating. It is well known that the phosphorus compounds play the role of promoters for the penetration of hydrogen during the cathodic polarization of steel, nickel, *etc.* [7]. The electroless deposition of Ni-P itself is accompanied by the evolution of hydrogen, part of which is incorporated into the coating. By electrochemical methods, Devanathan-Stachurski permeation cell, differential thermal analysis, X-ray diffraction and X-ray microanalysis, data are obtained on the process of interaction of hydrogen with Ni-P coating when used as an electrode for HER in alkaline or acidic media - diffusion of hydrogen in the alloy coating, phase transformation, composition and morphology of the alloy coating before and after electrochemical treatment.

Acknowledgement: Equipment supported under the project INFRAMAT (National Roadmap for Research Infrastructure) financed by Bulgarian Ministry of Education and Science was used in this investigation.

References

- 1. Y. Li, Z. Dong, L Jiao, Adv. Energy Mater. (2019) 1902104 https://doi.org/10.1002/aenm.201902104
- 2. C. Hu, C. Lv, S. Liu, Y. Shi, J. Song, Z. Zhang, J. Cai, A. Watanabe, Catalysts 10 (2020) 188, https://doi.org/10.3390/catal10020188
- Z. Angeles-Olvera, A. Crespo-Yapur, O. Rodríguez, J. L. Cholula-Díaz, L. María Martínez, M. Videa, Energies 15 (2022) 1609 https://doi.org/10.3390/en15051609
- 4. I. Paseka, Electrochim. Acta 40 (1995) 1633-1640 https://doi.org/10.1016/0013-4686(95)00077-R
- 5. V. Chakarova, M. Monev, *Bulg. Chem. Commun.* **51** (2019) 54-59
- 6. V. Chakarova, M. Monev, Electrocatalysis 14 (2023) 259–266 https://doi.org/10.1007/s12678-022-00791-x
- 7. J.F. Newman, L.L. Shreir, Corrosion Science 9 (1969) 631-641 https://doi.org/10.1016/S0010-938X(69)80117-4