

Design and optimization of low-power DC-DC converter for efficient fuel cell applications

Sameh O. Abdellatif¹, Ziad Khalifa²

¹Electrical Engineering Department, and FabLab at Centre for Emerging Learning Technologies (CELT), Faculty of Engineering,
The British University in Egypt, Cairo, Egypt, <u>Sameh.Osama@bue.edu.eq</u>
Chemical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE),
El-Sherouk, 11837, Cairo, Egypt, <u>Ziad.Khalifa@bue.edu.eq</u>

The abstract presents the design and optimization of a low-power DC-DC converter tailored for efficient fuel cell applications [1]. The study focuses on developing a converter system that minimizes power losses and maximizes energy efficiency within the context of fuel cell technology [2-6]. Through a comprehensive analysis of converter topologies, control strategies, and optimization techniques, the research aims to address the specific power requirements and operational characteristics of fuel cells [7-8]. The proposed converter design seeks to enhance the overall performance and reliability of fuel cell systems by achieving optimal power conversion efficiency while minimizing energy wastage, thereby contributing to the advancement of sustainable energy technologies.

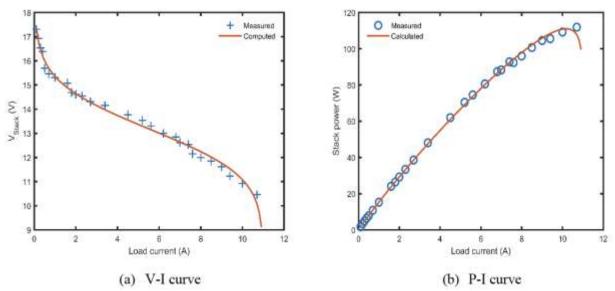


Fig. 1. Polarization curves of 100W Horizon PEMFCs' stacks as in our previous data in [1]

Acknowledgement: The authors would like to acknowledge the support and contribution of the Centre for Emerging Learning Technology (CELT), in The British University in Egypt for providing all the simulation facilities needed.

References

- 1. H. Ashraf, S. O. Abdellatif, M. M. Elkholy, A. A. El-Fergany, Honey badger optimizer for extracting the ungiven parameters of PEMFC model: Steady-state assessment, *Energy Conversion and Management* **258** (2022) 115521.
- 2. H. Ye et al., High step-up interleaved dc/dc converter with high efficiency. Energy sources, Part A 2020, 1-20.
- 3. K.V.G. Raghavendra *et al.*, A comprehensive review of DC–DC converter topologies and modulation strategies with recent advances in solar photovoltaic systems, *Electronics* **9(1)** (2019) 31.
- 4. Maheri, H.M., et al., High step-up DC–DC converter with minimum output voltage ripple, *IEEE Transactions on Industrial Electronics* **64(5)** (2017) 3568-3575.
- 5. M.K. Song, J. Sankman, D. Ma. 4.2 A 6A 40MHz four-phase ZDS hysteretic DC-DC converter with 118mV droop and 230ns response time for a 5A/5ns load transient. in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014
- V. Sidorov et al., An Overview and Comprehensive Comparative Evaluation of Constant-Frequency Voltage Buck Control Methods for Series Resonant DC–DC Converters, IEEE Open Journal of the Industrial Electronics Society 2 (2020) 65-79
- 7. F.M. Shahir, E. Babaei, M. Farsadi, Extended topology for a boost DC–DC converter, *IEEE Transactions on Power Electronics* **34(3)** (2018) 2375-2384.
- 8. Azer, P. A. Emadi, Generalized state space average model for multi-phase interleaved buck, boost and buck-boost DC-DC converters: transient, steady-state and switching dynamics, *IEEE Access* **8** (2020) 77735-77745.