

Reactive deposition vs. strong electrostatic adsorption: A key to highly active single atom co-catalysts in photocatalytic H₂ generation

Yue Wang¹, Shanshan Qin^{1#}, Nikita Denisov¹, Hyesung Kim¹, Zdeněk Baďura², Bidyut Bikash Sarma³, and Patrik Schmuki^{1, 2}

¹Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany

²Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, 78371 Olomouc, Czech Republic
³Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany

Single atoms (SAs) have become a highly investigated topic in heterogeneous catalysis. In photocatalysis, they have reached a very high significance as co-catalysts, namely in photocatalytic production of H_2 from aqueous electrolytes. A key issue in terms of exploiting SAs is the deposition approach used to establish the SA state and its stabilization.

The most classic approach to achieve maximum dispersion of noble metals on oxide supports is so-called strong electrostatic adsorption (SEA) – it is a backbone of classic catalyst preparation. In catalytic literature it is widely perceived that this SEA approach in general is superior to other approaches due to the strong noble-metal attachment and the high loading that can be achieved while maintaining a high metal dispersion. The concept has accordingly been widely used to attach SA Pt on various oxides, including TiO₂.

In the presentation we show that a reactive attachment based on hexachloroplatinic(IV) acid leads directly to SA configuration with a significant higher specific H_2 evolution activity than achieved with strong electrostatic adsorption – and this is at a significantly lower Pt loading without any post deposition treatment. Due to the significance of the work for the SA-field, we anticipate a particularly wide interest in the materials science and solar energy communities.

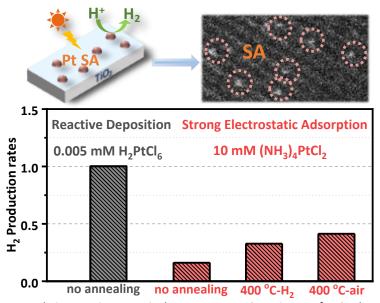


Figure 1. Schematic of the H_2 evolution reaction on Pt single atoms. HAADF-STEM image of Pt-SA-decorated TiO₂ anatase layer. Mass specific photocatalytic H_2 evolution rate for Pt-SA-decorated TiO₂ anatase layers treated under different deposition approaches and post annealing conditions

References

- Y. Wang, S. Qin, N. Denisov, H. Kim, Z. Bad'ura, B. B. Sarma, P. Schmuki, Adv. Mater. 35 (2023) 2211814 https://doi.org/10.1002/adma.202211814
- S. Qin, J. Will, H. Kim, N. Denisov, S. Carl, E. Spiecker, P. Schmuki, ACS Energy Lett. 8 (2023) 1209 https://doi.org/10.1021/acsenergylett.2c02801
- 3. N. Denisov, S. Qin, J. Will, B. N. Vasiljevic, N. V. Skorodumova, I. A. Pašti, B. B. Sarma, B. Osuagwu, T. Yokosawa, J. Voss, J. Wirth, E. Spiecker, P. Schmuki, *Adv. Mater.* **35** (2023) 2206569 https://doi.org/10.1002/adma.202206569
- L. Chen, R. R. Unocic, A. S. Hoffman, J. Hong, A. H. Braga, Z. Bao, S. R. Bare, J. Szanyi, JACS Au 1 (2021) 977. https://doi.org/10.1021/jacsau.1c00111
- 5. L. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, P. Christopher, *Nat. Mater.* **18** (2019) 746 https://doi.org/10.1038/s41563-019-0349-9