

Extended characteristic polynomial estimating the electrochemical behaviour of azulene thiophen–vinyl–pyridines

Eleonora-Mihaela Ungureanu¹, Amalia Stefaniu², Oana Ciocirlan³, Cornelia Musina³,

Magdalena-Rodica Bujduveanu³, Lorentz Jäntschi⁴

¹Doctoral School of Chemical Engineering and Biotechnologies,

National University of Science and Technology POLITEHNICA, Bucharest, Romania

²National Institute of Chemical, Pharmaceutical Research and Development, Bucharest, Bucharest, Romania

³Faculty of Chemical Engineering and Biotechnologies,

National University of Science and Technology POLITEHNICA, Bucharest, Romania

⁴Department of Physics and Chemistry, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

A series of 6 azulene thiophen–vinyl–pyridine ligands for which two electrochemical properties (oxidation (Ea) and reduction (Ec) potentials) were collected in a recent study (see Table 3 in [1]) was subjected to (i) raw molecular modelling with Merck molecular force field (MMFF, see [2]), followed by (ii) computational analysis using families of molecular descriptors. Two descriptor families were considered in this analysis, Fragmental Matrix Property Indices (FMPI, as seen in [3] and [4]) and Extended Characteristic Polynomial (EChP, as seen in [5] and [6]). The results show that EChP is able to well distinguish between ligands as well as to provide a high estimation capability (R²> 0.9990 for Ea; R²> 0.9998 for Ec). As it is known, MMFF method is a very good first level of approximation for molecular geometry. Thus, further investigation is required in order to validate these preliminary results. The results with FMPI are not spectacular - they are inferior to those with EChP, and this suggests that the nature of the property - the reduction and oxidation potentials - is localized. A functional group or a position in the structure is more suitable to express an electrochemical property. Figures 1 and 2 give estimates of the association between the chemical structure and the electrochemical potentials by means of the individuals "RDCN0940" and "LEGN0705" members of the family of extended characteristic polynomials.

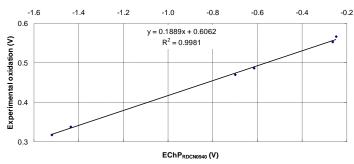


Figure 1. Oxidation as linear function of RDCN0940 extended characteristic polynomial

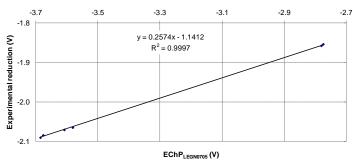


Figure 2. Reduction as linear function of LEGN0705 extended characteristic polynomial

References

- 1. O. Ciocirlan, M.E. Ungureanu, A.A. Vasile (Corbei) A. Stefaniu, Symmetry 14 (2022) 354 https://doi.org/10.3390/sym14020354
- 2. T.A. Halgren, J. Comput. Chem. 17 (1996) 490-519 http://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
- 3. S.D. Bolboacă, L. Jäntschi, J. Chem. 1 (2016) 1 http://doi.org/10.1155/2016/1791756
- 4. D. Bálint, L. Jäntschi, Mathematics 9 (2021) 2855 https://doi.org/10.3390/math9222855
- S.D. Bolboacă, L. Jäntschi, Characteristic Polynomial in Assessment of Carbon-Nano Structures. In M. Putz & M. Mirica (Eds.), Sustainable Nanosystems Development, Properties, and Applications (pp. 122-147). IGI Global, 2017. http://doi.org/10.4018/978-1-5225-0492-4.ch004
- 6. D.-M Joiţa, L. Jäntschi, Mathematics 5 (2017) 84 http://doi.org/10.3390/math5040084