

Probing the correlation of interfacial chemistry and performance of electrocatalysts by surface enhanced IR absorption spectroscopy

Xian-Yin Ma, Wen-Bin Cai

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China

Email: wbcai@fudan.edu.cn

Electrocatalysts play a key role in the interconversion of chemical and electrical energies, and there is an increasing demand for their rational syntheses. To meet such a requirement, as a starting point, it is necessary to understand the correlation between interfacial chemistry and electrocatalytic activity and durability of a catalyst. In this talk, I will introduce our efforts in developing in situ attenuate total reflection surface enhanced IR absorption spectroscopy (ATR-SEIRAS) to investigate electrocatalytic oxidation of small organic molecules on Pd and Pt-based catalysts at molecular level, with a focus on correlating the spectral features of surface and solution species with the resulting catalytic performances. I will also showcase that spectral feature change of a probe molecule may provide a hint for a new practical electrocatalyst through electronic property tuning.

Acknowledgement: Financial supports from the National Natural Science Foundation of China (21733004, 22002088 and 22002036) and the Shanghai Science and Technology Innovation Action Plan (22dz1205500) are highly appreciated.

References

- 1. Wang, J.Y.; Zhang, H.X.; Jiang, K. et al., J. Am. Chem. Soc. 2011, 133, 14876
- 2. Jiang, K.; Xu, K.; Zou. S, et al., J. Am. Chem. Soc., 2014, 136, 4861.
- 3. Jiang, K.; Chang, J.; Wang, H.; et al., ACS Appl. Mater. Interfaces 2016, 8,7133.
- 4. Wang, H.; Zhou, Y.W.; Cai, W.B., Curr. Opin. Electrochem., 2017, 1, 73.
- 5. Huang, W.J.; Ma, X.Y.; Wang, H.; et al., Adv. Mater., 2017, 29, 1703057
- 6. Jiang, B.; Zhang, X.G.; Jiang, K.; et al. J. Am. Chem. Soc., 2018, 140, 2880.
- 7. Qin, X.X.; Li, H.; Xie, S.H.; et al., ACS Catalysis, 2020, 10, 3921
- 8. Ma, X.Y.; Zhang, W.Y.; Ye, K.; et al, Anal. Chem., 2022, 94,11337.
- 9. Li, H.; Qin, X.X.; Zhang, X.G.; et al, ACS. Catal., 2022, 12, 12750.
- 10. Jiang, T.W.; Qin, X.X.; Ye, K.; et al., Appl. Catal. B, 2023, 334, 122815.
- 11. Wei, Y.; Mao, Z.J.; Jiang, T.W.; et al. Angew. Chem. Int. Ed., 2024, e202317740.